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SUMMARY 
The penalty function formulation of the finite element method is described for the analysis of transient 
incompressible creeping flows. Marker particles are utilized to represent moving free surfaces and to 
visualize the flow patterns. For determining the movement of markers from element to element, the area co- 
ordinate system of the linear triangular element is introduced. 

With the method presented, a punch indentation problem and an injection problem for an L-shaped 
cavity are solved for Newtonian and power-law fluids. 
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1. INTRODUCTION 

The analysis of time-dependent flows with deforming free surfaces is one of the most important 
areas in technological and engineering fields, such as those found in polymer injection mouldings. 
For analysing the flows numerically, several types of methods are now available. 

The finite element method applied to these flow problems often incorporates the mesh- 
rezoning method,' in which the velocity calculated in the Lagrangian description is utilized for 
determining the new mesh arrangement. With this method, however, difficulties will arise if there 
are obstacles in the domain of the analysis. In order to avoid these difficulties, a method which 
interpolates a Lagrangian velocity into a Eulerian system can be used.2 The disadvantage of this 
method is that the calculated shape of the free surfaces depends on the shape of the original mesh. 

On the other hand, when using the finite difference method there are so-called MAC and PIC 
methods for analysing the These methods make use of marker particles to indicate free 
surfaces. The flow patterns can be visualized if the markers are also arranged inside the transient 
flow. These methods, however, are difficult to apply under complicated fixed boundary condi- 
tions. Such conditions can easily be covered if the finite element method is used. 

In this study we present a finite element method for analysing transient incompressible creeping 
flows. Marker particles are used to represent free surfaces and to visualize flow patterns. The 
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penalty function formulation is used to solve the velocity field. The markers in a finite element can 
well simulate the deforming free surfaces simply by moving towards the direction of the velocity 
vectors. In order to move the markers to indicate the successive moving free surfaces, the area co- 
ordinate system of the linear triangular element, which is utilized for determining the new marker 
position in an element, is introduced into the four-node rectangular isoparametric element. 

A punch indentation problem is first solved to verify the scheme and the results are compared 
with those obtained by the mesh-rezoning method. In the second example problem, successive 
stages of deforming free surfaces by the injection moulding of an L-shaped cavity are shown. Both 
power-law and Newtonian fluids are considered here. 

2. GOVERNING EQUATIONS 

We first present the general governing equations for the time-dependent creeping flows of 
incompressible Newtonian and power-law fluids in rectangular Cartesian co-ordinates. The 
equations without body forces are 

equilibrium 
- p ui, f + aij, j = 0 ,  

continuity (incompressible Juids) 

constitutive relationships 

a.. = g ! . + p d . .  
11 t J  [ J ’  

E i j  = (ui, j + uj, i ) / 2  9 

a!. = 2pE.. 
15 IJ ’ 
p = constant (Newtonian fluids), 

p = p , , ( 4 1 , ( ~ ) ) ( ” - ’ ) ’ ~  (power-law fluids) 

Iz(&) = & i j E i j ,  

where p is the density, oij is the total stress, aij is the deviatoric stress, p is the pressure, ui is the 
velocity component in the xi-direction, Ui is the specified velocity on Su, Ti is the specified traction 
on S ,  with unit outward normal vector v j ,  p is the viscosity coefficient and p o  and n are the 
material constants. 

3. NUMERICAL SCHEME 

In order to obtain the solution for equations (1) and (2) we use the penalty function formulation of 
the finite element method,6 and to obtain the positions of moving free surfaces, marker particles 
are utilized. 
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3.1. Finite element method for equations ( I )  and (2) 

The velocity is interpolated as 

ui N N a u a i ,  (1 1) 
where Na is the shape function for the velocity and uai is the nodal velocity. Galerkin's method 
applied to equation (l), with the weighting functions chosen to be the same as the approximate 
function, gives 

- 1. pN,ui, dv + 1 N,aij, jdv=O. 

S . s . 1 .  s, 
(12) 

Integration by parts of the second integral in equation (12) and the use of equation (3) gives us 

pN,ui.,dv+ N,,ja:,idu+ N,,jpsijdu- N,vjqds = 0. (13) 

We now approximate the pressure, using the penalty function method, as 

p = - &, (14) 
where A is the penalty number. We note that the incompressible condition, equation(2), is 
imposed in equation (14); Substituting equations (14) and (4) into equation (13) we obtain 

1 1 

If now the interpolation function (1 1) is substituted in equation (15) we may write the equation in 
matrix notation as 

where uf and u : + ~ '  are the velocity at time t and t + A t  respectively, with At the time interval. 
Equation (16) can therefore be written as 

( i i ~ t ) [ c l { { u : + ~ ' } -  { . : } } + [ ~ ] { ( i - ~ ) { u : } + e { ~ : + A ' } }  = ( ( 1  - e ) { F : }  + e p : + A t } } ,  

(19) 

(20) 

(21) 

(22) 

and rearranging we obtain 

( C c I i A t + e C K I ) { A u f }  = { F } a v e -  CKI {uf}? 
= u: + Au:, 

{ F } a v e  = {(l-e){F:} + e ( F : + " } }  9 

where [ C], [ K] and { F} represent the coefficients from the first integral in equation (15), from 
the second and third integrals and from the fourth integral respectively. 

A four-node rectangular isoparametric element is used for approximating the velocity. For this 
approximation the 2 x 2 Gauss-Legendre integration rule has been employed except for the third 
integral in equation (15). The third term, which involves the penalty number, is integrated with 
the one-point rule. 
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3.2. Marker particles for fluid motions 

In order to determine the moving free surfaces, marker particles in a linear triangular element 
are introduced into a four-node velocity element. Figure l(a) shows the marker in a rectangular 
element RO and the eight elements around RO. We now divide the element RO into four triangular 
elements and assume the marker to be in a T1 element for illustrative purposes as shown in 
Figure l(b). Consider the marker in a T1 element at  time t with velocity u, and position x,l. The 
position of the marker xi2 at the next time step t + At may be obtained by the equation 

x i2=xi l  + ui(xi, t )dt ,  (23) !:+Af 
in which the velocity u, of the particle can be determined by the equations 

(k = ( A ,  + aixi1)/2A 9 (25) 

where t k  is the area co-ordinate of the triangular element, uk is the velocity at the kth node and 
A, A,,  a, are constants calculated from the shape of triangular element.3 

For determining the movement of the marker from element to element, we consider the marker 
particle to take a position in any of the five zones shown in Figure l(c) at the very beginning of its 
movement. To find its earlier position within any of the five zones, we divide our time step At in 
equation (21) into n equal intervals. Next the position found is transformed into that in the area 
co-ordinate system. The new marker position at time At/n is then determined .according to the 
relationship between tk and the sign of the area co-ordinate as shown in TableI. When the 
marker position is found in the next zone, we consider it as zone 0 and calculate the new marker 
velocity based on the triangular node velocities in zone 0. This process is continued until the step 
t + A t  is completed. The interval of At/n helps not only to find the new zone but also to move the 
marker along a streamline with better accuracy. It should be noted that the extra storage 
necessary to move the marker particle is that for the four elements R1, R3, R5 and R7 adjacent to 
element RO. 

R1 R O  R 5  

@, 
1 ‘ 2  

R 2  R 3  

L 

a) rec tangular  elements around RO b) t r i a n g u l a r  elements i n  RO c)  a r ea  coordinates i n  TI  

@ marker p a r t i c l e  in T1 

Figure 1. Triangular elements in a four-node element 
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3.3. Assumption of boundary condition and free su$ace 

In order to proceed with the transient analysis, we assume that the free surface, which is 
physically a line consisting of the forefront markers and also the place to specify the boundary 
conditions, is located on the boundary line between the element having a forefront marker(s) and 
the element having not. It should be noted that the traction force along the side is zero if we do 
not specify any boundary values and the assumption does not affect the visualization of the free 
surface as a marker front. 

4. EXAMPLE PROBLEMS 

4.1. A punch indentation problem 

In order to test the above algorithm, we first solve the Newtonian fluid flow indented by a 
punch. Figure 2 shows the geometry, the finite element mesh, the initial marker configuration and 
the results obtained by the present method. The material properties used in the analysis were 
p = 1.0, p = 100 and Vo = 1.0. For the analysis we chose 8 in equation (16) as 0-75 from the 
numerical experiment to prevent the growth of wiggles in the solution. Figure 3 shows the 

Table I. The five zones for marker movements 

Zone 0 Zone 1 Zone 2 Zone 3 Zone 4 

5 ,  2 0  < O  
5 2  2 0  < O  < O  > O  3 0  
53 2 0  < O  2 0  2 0  < o  

- 
T i m e = O .  0 Time=O. 2 Time-0.4 

Time=O. 6 Time.O.8 
Figure 2. Punch indentation problem by the present method 
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calculated results obtained by the mesh-rezoning method.' Both the mesh-rezoning and the 
present method give almost identical results on the shape of the free surfaces without any 
difficulty. The highest swell positions at  several time steps obtained by either of the methods are 
shown in Table 11. It is interesting to note that the flow pattern of the fluid can be visualized by 
the present method. 

4.2. L-shaped cavity flows 

As a practical example problem, the injection moulding of an L-shaped cavity is analysed. Both 
Newtonian and power-law fluids are considered. The geometry and the finite element mesh used 
in the analysis are shown in Figure 4. The element is assumed to be filled with fluid if the marker 
has passed it once. This assumption requires fewer particles to be arranged in the domain and 
saves on computing time. With this assumption we arrange finer meshes along the walls and also 
arrange plenty of markers to describe the flow pattern. Along the entrance AB, 42 markers are 
arranged during the first 3At (At = 0.0025 s)  time period. Following that time, we place another 
marker in element H whenever the old marker in that element has gone. When the fluid arrives at 

v= 1 T .  =O. 

u=o. :v=o. 
Time=O. 0 

u=o 
v= 0 

Time=O. 2 Time=O. 4 

Time=O. 6 Time=O. 8 

Figure 3. Punch indentation problem by mesh rezoning 

Table 11. Highest swell positions obtained by present method 
and by mesh rezoning (punch indentation problem) 

Method 

Y Present Rezoning 

Time X Y X Y 
0.2 1.52 1.20 1.63 1.21 
0.4 1.77 1.36 1.75 1.39 
0.6 1.84 1.51 1.88 1.58 
0.8 1.96 1.71 2.00 1.77 



FINITE ELEMENT ANALYSIS OF CREEPING FLOWS 403 

the corner F, the arranged markers are not sufficient to describe the free surface. We then add a 
new marker in element G at every At time step after the fluid passes that element. 

The material properties and the specified velocity at the entrance of the cavity used here are 

p = 0.765 g ~ m - ~ ,  

Newtonian fluid 

p = 3.11 x 10' P, 

uAB = 7.77 x [l-(y/0.15)'] cms-', 

power-law fluid 

po = 2.69 x lo3 Pas"- ', n = 0-467 

po = 4.98 x lo3 Pas"-', n = 1.000 

when y 2 0.5, 

when y < 0.5, 

uAB = urnax x [ I  -(y/0.15)"+""] cms-', 

urnax = 5.8275 x (2n+ l ) / (n+ l )cms- ' ,  

where y is the shear strain rate. 
Figures 5 and 6 show the results obtained for the Newtonian and power-law fluids respectively. 

A L 5 . 0 - c  

Figure 4. L-shaped cavity problem 

n n 

Figure 5. L-shaped cavity flow (Newtonian fluid) 
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n n 

TIME = 0.m 9c T I E  = 0.63 SEC 

Figure 6. L-shaped cavity flow (power-law fluid) 

5. CONCLUSIONS 

Using the marker particle, the analysis of transient creeping flows with free surfaces by the penalty 
function formulation of the finite element method was described. With the present method, the 
free surfaces can be well simulated and the flow patterns inside of the fluid can be visualized. It 
should be noted that the present method is able to be applied to the problems with complicated 
fix-boundary conditions, which are intractable by the finite difference mehtod. 
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